Improving Rule Evaluation Using Multitask Learning

نویسنده

  • Mark D. Reid
چکیده

This paper introduces Deft, a new multitask learning approach for rule learning algorithms. Like other multitask learning systems, the one proposed here is able to improve learning performance on a primary task through the use of a bias learnt from similar secondary tasks. What distinguishes Deft from other approaches is its use of rule descriptions as a basis for task similarity. By translating a rule into a feature vector or “description”, the performance of similarly described rules on the secondary tasks can be used to modify the evaluation of the rule for the primary task. This explicitly addresses difficulties with accurately evaluating, and therefore finding, good rules from small datasets. Deft is implemented on top of an existing ILP system and the approach is tested on a variety of relational learning tasks. Given appropriate secondary tasks, the results show that Deft is able to compensate for insufficient training examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmark Environments for Multitask Learning in Continuous Domains

As demand drives systems to generalize to various domains and problems, the study of multitask, transfer and lifelong learning has become an increasingly important pursuit. In discrete domains, performance on the Atari game suite has emerged as the de facto benchmark for assessing multitask learning. However, in continuous domains there is a lack of agreement on standard multitask evaluation en...

متن کامل

Active Online Multitask Learning

In this paper, we propose an online multitask learning framework where the weight vectors are updated in an adaptive fashion based on inter-task relatedness. Our work is in contrast with the earlier work on online multitask learning (Cavallanti et al., 2008) where the authors use a fixed interaction matrix of tasks to derive (fixed) update rules for all the tasks. In this work, we propose to up...

متن کامل

Evolutionary Architecture Search For Deep Multitask Networks

Multitask learning, i.e. learning several tasks at once with the same neural network, can improve performance in each of the tasks. Designing deep neural network architectures for multitask learning is a challenge: There are many ways to tie the tasks together, and the design choices matter. The size and complexity of this problem exceeds human design ability, making it a compelling domain for ...

متن کامل

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS

Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...

متن کامل

Multitask Learning 43 1

Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new eviden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004